We will make use of Euler's formula, which states that, for any real number t, eit = cos t + i sin t.
It follows that
cos t = ½ (eit + e−it), and
i sin t = ½ (eit − e−it).
Let C = (cos a + cos 2a + ... + cos na), and S = (sin a + sin 2a + ... + sin na).
Then consider P = eia + e2ia + ... + eina = C + iS.
Evaluating P as a geometric series, we have
Recall that P = C + iS. That is, C is the real part of the above expression for P; S is the imaginary part.
We will make use of the following product-to-sum and sum-to-product trigonometric identities.
| sin x · sin y = ½ [cos(x − y) − cos(x + y)] | (1) |
| sin x · cos y = ½ [sin(x + y) + sin(x − y)] | (2) |
| cos x − cos y = −2 sin ½(x + y) · sin ½(x − y) | (3) |
| sin x − sin y = 2 cos ½(x + y) · sin ½(x − y) | (4) |
Let S = (sin a + sin 2a + ... + sin na).
| Then S · sin(a/2) | = ½ [cos(a/2) − cos(3a/2) + cos(3a/2) − cos(5a/2) + ... + cos[(2n−1)a/2] − cos[(2n+1)a/2]], by (1). |
| = ½ [cos(a/2) − cos[(2n+1)a/2]]. | |
| = sin[(n+1)a/2] · sin(na/2), by (3). |
Similarly, let C = (cos a + cos 2a + ... + cos na).
| Then C · sin(a/2) | = ½ [−sin(a/2) + sin(3a/2) − sin(3a/2) + sin(5a/2) − ... − sin[(2n−1)a/2] + sin[(2n+1)a/2]], by (2). |
| = ½ [−sin(a/2) + sin[(2n+1)a/2]]. | |
| = cos[(n+1)a/2] · sin(na/2), by (4). |
Show that tan (
/13) · tan (2
/13) · tan (3
/13) · tan (4
/13) · tan (5
/13) · tan (6
/13) =
.
Hint - Solution
Pennies are placed around the circumference of a circle as follows. Using polar coordinates, and with the center of the circle at the pole, place 1 penny with its center of mass vertically above the point (1,0), 2 pennies piled vertically at (1,a), 3 pennies at (1,2a), ... , n pennies at (1,(n−1)a), where a = 2
/n radians. Find the x and y coordinates of the center of mass of the coins.
Source: Trigonometric Delights, by Eli Maor. See Chapter 8.