We will use the law of sines, on triangles BED and BCD, as in the original puzzle, and on triangle BEC.
We have
BAC = 2a,
DBC = b, and
ECB = c. Let
EDB = x.
Applying the law of sines to:
BED, BE/sinx = BD/sin(90°+a+b−x),
BCD, BC/sin(90°+a−b) = BD/sin(90°−a),
BEC, BE/sinc = BC/sin(90°+a−c).
Therefore BD = BE · cos(a+b−x) / sinx = BC · cosa / (cos(a−b)
Also BC = BE · cos(a−c) / sinc
Therefore cos(a+b−x) / sinx = cos(a−c) cos a / cos(a−b) sin c
Using trigonometric identity cos(y−z) = cosy cosz + siny sinz,
cos(a+b) cot x + sin(a+b) = cos(a−c) cos a / cos(a−b) sin c.
Using trigonometric identity 2 cos y cos z = cos(y−z) + cos(y+z):
The table below shows all solutions for which all angles are integers (when measured in degrees), and for which
DBC is greater than
ECB.
| 4 | 46 | 4 | 2 |
| 4 | 46 | 44 | 42 |
| 8 | 47 | 8 | 4 |
| 8 | 47 | 43 | 39 |
| 12 | 42 | 18 | 12 |
| 12 | 42 | 30 | 24 |
| 12 | 48 | 12 | 6 |
| 12 | 48 | 42 | 36 |
| 12 | 57 | 33 | 15 |
| 12 | 57 | 42 | 24 |
| 12 | 66 | 42 | 12 |
| 12 | 66 | 54 | 24 |
| 12 | 69 | 21 | 3 |
| 12 | 69 | 66 | 48 |
| 12 | 72 | 42 | 6 |
| 12 | 72 | 66 | 30 |
| 16 | 49 | 16 | 8 |
| 16 | 49 | 41 | 33 |
| 20 | 50 | 20 | 10 |
| 20 | 50 | 40 | 30 |
| 20 | 60 | 30 | 10 |
| 20 | 60 | 50 | 30 |
| 20 | 65 | 25 | 5 |
| 20 | 65 | 60 | 40 |
| 20 | 70 | 50 | 10 |
| 20 | 70 | 60 | 20 |
| 24 | 51 | 24 | 12 |
| 24 | 51 | 39 | 27 |
| 28 | 52 | 28 | 14 |
| 28 | 52 | 38 | 24 |
| 32 | 53 | 32 | 16 |
| 32 | 53 | 37 | 21 |
| 36 | 54 | 36 | 18 |
| 40 | 55 | 35 | 15 |
| 40 | 55 | 40 | 20 |
| 44 | 56 | 34 | 12 |
| 44 | 56 | 44 | 22 |
| 48 | 57 | 33 | 9 |
| 48 | 57 | 48 | 24 |
| 52 | 58 | 32 | 6 |
| 52 | 58 | 52 | 26 |
| 56 | 59 | 31 | 3 |
| 56 | 59 | 56 | 28 |
| 72 | 39 | 21 | 12 |
| 72 | 39 | 27 | 18 |
| 72 | 42 | 24 | 12 |
| 72 | 42 | 30 | 18 |
| 72 | 48 | 24 | 6 |
| 72 | 48 | 42 | 24 |
| 72 | 51 | 39 | 9 |
| 72 | 51 | 42 | 12 |
| 120 | 24 | 12 | 6 |
| 120 | 24 | 18 | 12 |